

SMRJ Government College, Siwani (Bhiwani)

(Affiliated to Chaudhary Bansi Lal University, Bhiwani)

Session: 2025-26 Lesson Plan

(Department of Geography)

Teacher: Satpal Kumar Course Type & Title: Advanced Climatology

Class: M.Sc. Geography Course Code: 25PG-GEO-102

Semester: 1st Credits: 4

Maximum Marks: 100 Internal Assessment Marks: 30

End Term Exam Marks: 50 Practical Marks: 20

Course Outcomes:

1. Explain advanced atmospheric processes and global climate systems using theoretical and empirical perspectives.

- 2. Analyze spatial and temporal patterns of climate variability using climatological datasets.
- 3. Evaluate the science and evidence of climate change and its regional and global impacts.
- 4. Apply remote sensing, GIS, and statistical tools for climatic data analysis and visualization.

Sr. No.	Week/Month, 2025	Unit/ Topic/ Chapter to be covered	Assignment/ Test/ Remarks, if any
1	01.08.2025 - 02.08.2025	Familiar with syllabus	
2	04.08.2025 - 09.08.2025	Structure and thermodynamics of the atmosphere	
3	11.08.2025 – 16.08.2025	Global energy balance, radiation laws, and heat transfer mechanisms, General circulation of the atmosphere,	
4	18.08.2025 – 23.08.2025	Walker circulation, jet streams, ENSO, and monsoon systems, Atmospheric stability,	
5	25.08.2025 – 30.08.2025	cloud microphysics and precipitation processes, Contemporary approaches: numerical modeling,	
6	01.09.2025 - 06.09.2025	climate system feedbacks, Earth system science perspective	
7	08.09.2025 – 13.09.2025	Classical and modern climate classifications (Köppen, Thornthwaite, Trewartha, and empirical/statistical systems)	
8	15.09.2025 – 20.09.2025	Inter-annual, decadal, and centennial climate variability (ENSO, NAO, PDO), Paleoclimatology: proxies, methods. and climatic reconstructions	
9	22.09.2025 – 27.09.2025	Regional climatology with special reference to India: monsoon dynamics	

10	29.09.2025 - 04.10.2025	droughts, and extreme weather events, Synoptic and mesoscale meteorology; role of teleconnections.	Assignment
11	06.10.2025 – 11.10.2025	IPCC framework, greenhouse gases, radiative forcing, and anthropogenic emissions, Climate models and scenarios (GCMs, RCMs, downscaling techniques),	
12	13.10.2025 – 18.10.2025	Observed and projected climate trends (temperature, precipitation, sea-level rise), Impacts on ecosystems, agriculture,	
13	27.10.2025 – 01.11.2025	water resources, and human health, Climate change mitigation, adaptation, and policy (UNFCCC, Paris Agreement), Role of geospatial technologies in climate research, Anthropogenic impacts on geomorphic systems (urbanization, mining, damming)	
14	03.11.2025 - 08.11.2025	Interpretation of synoptic weather maps and weather symbols	Minor Test
15	10.11.2025 – 15.11.2025	Preparation of isopleth maps (isotherms, isohyets) using GIS Time series analysis of temperature and rainfall data (trend detection)	
16	17.11.2025 – 22.11.2025	Correlation and regression analysis of climatic variables	
17	24.11.2025 – 29.11.2025	Field visit to a weather observatory and recording of the observations from various instruments	

- 1. Barry, R. G., & Chorley, R. J. (2010). Atmosphere, weather and climate (9th ed.). Routledge.
- 2. Lutgens, F. K., & Tarbuck, E. J. (2013). The atmosphere: An introduction to meteorology (12th ed.). Pearson.
- 3. Critchfield, H. J. (2013). General climatology (4th ed.). Prentice Hall.
- 4. Aguado, E., & Burt, J. E. (2018). *Understanding weather and climate* (7th ed.). Pearson.
- 5. Lal, D. S. (2012). Climatology (4th ed.). Sharda Pustak Bhawan.
- 6. IPCC. (2021). Climate change 2021: The physical science basis. Cambridge University Press.
- 7. Trenberth, K. E. (Ed.). (2005). *Climate system modeling*. Cambridge University Press.
- 8. Peixoto, J. P., & Oort, A. H. (1992). Physics of climate. Springer.

Signature of the teacher concerned

Session: 2025-26
Lesson Plan
(Department of Geography)

Teacher: Satpal Kumar Class: M.Sc. Geography

Semester: 1st

Maximum Marks: 100 End Term Exam Marks: 50 Course Type & Title: Principles of Geomorphology Course Code: 25PG-GEO-101

Credits: 4

Internal Assessment Marks: 30 Practical Marks: 20

Course Outcomes:

1. Understand and explain the fundamental concepts and processes in geomorphology.

- 2. Analyze the evolution of landforms in relation to structure, process, and time.
- 3. Evaluate different geomorphic theories and apply them in interpreting landscapes.
- 4. Use topographic maps, field techniques, and GIS tools to identify and map landforms.

Sr. No.	Week/Month, 2025	Unit/ Topic/ Chapter to be covered	Assignment/ Test/ Remarks, if any
1	01.08.2025 - 02.08.2025	Familiar with Syllabus	
2	04.08.2025 - 09.08.2025	Nature, scope, and significance of geomorphology in Earth system science,	
3	11.08.2025 – 16.08.2025	Historical development of geomorphic thought: Davisian, Penckian, and Dynamic Equilibrium.	
4	18.08.2025 – 23.08.2025	Systems approach and process-response models, Contemporary trends: Process geomorphology, tectonic geomorphology, and environmental geomorphology	Assignment
5	25.08.2025 – 30.08.2025	Endogenic processes: volcanism, earthquakes, folding and faulting	
6	01.09.2025 - 06.09.2025	mountain building, Exogenic processes: weathering, mass movement, erosion, transportation, and deposition	
7	08.09.2025 - 13.09.2025	Geomorphic agents and associated landforms: fluvial,	

		glacial, Aeolian	
8	15.09.2025 – 20.09.2025	Coastal, and karst systems	
9	22.09.2025 – 27.09.2025	Plate tectonics and landform evolution, Neo-tectonics and active tectonics in landscape modification,	
10	29.09.2025 - 04.10.2025	Climatic geomorphology: landforms in arid, humid, periglacial, and tropical regions,	
11	06.10.2025 – 11.10.2025	Quaternary landscape evolution: glacial-interglacial cycles and sea-level changes.	
12	13.10.2025 – 18.10.2025	Interpretation of topographic maps & Aerial Photographs for geomorphic features	
13	27.10.2025 - 01.11.2025	Slope analysis: clinographic, hypsometric, and gradient analysis	Assignment
14	03.11.2025 - 08.11.2025	Drainage basin and network analysis (stream order, bifurcation ratio, density)	Minor Test
15	10.11.2025 – 15.11.2025	Landforms Interpretation and Analysis with Digital Elevation Models (DEMs)	
16	17.11.2025 – 22.11.2025	Field identification and interpretation of landforms and geomorphic processes (local/nearby region)	
17	24.11.2025 – 29.11.2025	Prepare a geomorphic map using GIS tools.	

- 1. Huggett, R. J. (2011). Fundamentals of geomorphology (3rd ed.). Routledge.
- 2. Summerfield, M. A. (1991). Global geomorphology. Prentice Hall.
- 3. Ritter, D. F., Kochel, R. C., & Miller, J. R. (2011). Process geomorphology (5th ed.). Waveland Press.
- 4. Kale, V. S., & Gupta, A. (2001). Introduction to geomorphology. Orient Blackswan. Burbank,
- 5. D. W., & Anderson, R. S. (2011). Tectonic geomorphology (2nd ed.). Wiley-Blackwell.
- 6. Anderson, R. S., & Anderson, S. P. (2010). *Geomorphology: The mechanics and chemistry of landscapes*. Cambridge University Press.
- 7. Huggett, R. J. (2011). Fundamentals of geomorphology (3rd ed.). Routledge.
- 8. Summerfield, M. A. (1991). Global geomorphology. Prentice Hall.
- 9. Kale, V. S. (2014). Landscape processes and landforms of India. Springer.

Signature of the teacher concerned

Session: 2025-26
Lesson Plan
(Department of Geography)

Teacher: Satpal Kumar Class: M.Sc. Geography

Semester: 3rd

Maximum Marks: 100

End Term Exam Marks: 80

Course Type & Title: Urban Geography Course Code: 19 GEO 302

Credits: 4

Internal Assessment Marks: 20

Course Outcomes:

The objectives of the course are to understand the process of urbanization and origin, growth and classification of urban settlements with relevant theories and models.

It also aims to relate urbanization process and the evolution of urban system and examine the contemporary urban issues.

Sr. No.	Week/Month, 2025	Unit/ Topic/ Chapter to be covered	Assignment/ Test/ Remarks, if any
1	01.08.2025 - 02.08.2025	Familiar with Syllabus	
2	04.08.2025 - 09.08.2025	Defining Urban, Urbanization and Urbanism; Urban Geography: Definition, nature and scope	
3	11.08.2025 – 16.08.2025	Origin growth & stages of urban systems; (Conurbation, Megalopolis, etc.) Lewis Mumford & Griffith Taylor.	
4	18.08.2025 – 23.08.2025	Urban population characteristics, Urban systems in Ancient Civilization, Medieval and Modern India.	Assignment
5	25.08.2025 – 30.08.2025	Trend of Urbanization in World & India.	
6	01.09.2025 - 06.09.2025	City and region; Spatial linkages (rural urban linkages) and interactions	
7	08.09.2025 – 13.09.2025	Rural Urban fringe, Suburbanization; Spatial network framework -	
8	15.09.2025 – 20.09.2025	Central Place Theory: Christaller, Losch, Walter Isard	
9	22.09.2025 - 27.09.2025	Size and spacing of cities: Rank Size Rule, Primate City;	

10	29.09.2025 - 04.10.2025	Functional classification of cities: concepts and scheme of	
		classification	
11	06.10.2025 - 11.10.2025	Urban Morphology and land use; Models of city structure:	
		Concentric Zone model by E.W. Burgess, Sector model by	
		Homer Hoyet,	
12	13.10.2025 - 18.10.2025	Multiple nuclei model by Harris and Ullman;	
		Contemporary urban morphology in the wake of	
		globalization – global city.	
13	27.10.2025 – 01.11.2025	Urbanisation in India: Patterns and Trends; Urban	
		problems: Environmental issues	
14	03.11.2025 - 08.11.2025	, overcrowding, transportation and mobility; Urban	Minor Test
		Inequality: Urban Poverty, Slums & squatter housing,	
		access to housing and amenities;	
15	10.11.2025 – 15.11.2025	Urban basic services; Quality of Urban Life; Urban Planning	
		in India: National urban policy,	
16	17.11.2025 – 22.11.2025	Study of master plans of Delhi and Chandigarh; The Smart	
		& sustainable cities.	
17	24.11.2025 – 29.11.2025	Revision	

Michael, P. (2013) Urban Geography: A Global Perspective. Routledge, USA.

- 2. Cater, H. (1972) The Study of Urban Geography. Edward Arnold, London.
- 3. Hall, P. (1992) Urban and Regional Planning. Routledge, London.
- 4. Kundu, A. (1992) Urban Development and Urban Research in India. Khanna Publication, New Delhi.
- 5. Castells, M. (1977) The Urban Question: A Marxist Approach. MIT Press, Cambridge.
- 6. Bhattacharya, B. (1979) Urban Development in India. Shree Publishing House, New Delhi.
- 7. Khan & Moyer. Reading in urban Geography. Syllabus of M.Sc. Geography, Department of Geography, CBLU w.e.f. session 2020-

Signature of the teacher concerned

Session: 2025-26
Lesson Plan
(Department of Geography)

Teacher: Satpal Kumar Course Type & Title: Fundamentals of Resource Geography

Class: BA With Major in Geography
Course Code: 24UN-GEO-102
Semester: 1st
Credits: 4

Maximum Marks: 100 Internal Assessment Marks: 30 End Term Exam Marks: 50 Practical Marks: 20

Course Outcomes:

1. acquaint with nature, techniques and field of resource geography.

- 2. enhance knowledge about classification and development process of natural resources.
- 3. provide knowledge on location, conservation and management methods of resources for sustainable development.
- 4. provide knowledge about concepts, policies, problems and models of natural resource utilization.
- 5* attain skills in mapping and monitoring of land, water, forest and mineral resources.

Sr. No.	Week/Month, 2025	Unit/ Topic/ Chapter to be covered	Assignment/ Test/ Remarks, if any
1	01.08.2025 - 02.08.2025	Familiar with Syllabus	
2	04.08.2025 - 09.08.2025	Nature, scope, techniques and importance of resource geography.	
3	11.08.2025 – 16.08.2025	Concepts of resource: exploitation, accumulation,	
4	18.08.2025 – 23.08.2025	poverty and resource degradation.	Assignment
5	25.08.2025 – 30.08.2025	Classification of resources: renewable and nonrenewable,	
6	01.09.2025 - 06.09.2025	biotic and abiotic resources.	
7	08.09.2025 – 13.09.2025	Relationship between natural resources and development process. Role of technology in natural resource development.	
8	15.09.2025 – 20.09.2025	Distribution, utilization, problems and management of land and water resources.	
9	22.09.2025 – 27.09.2025	Distribution, utilization, problems and management of land and water resources.	

10	29.09.2025 - 04.10.2025	Distribution, utilization, problems and management of	
		forest resources.	
11	06.10.2025 - 11.10.2025	Distribution, utilization, problems and management of	
		mineral resources.	
12	13.10.2025 - 18.10.2025	Models of natural resources process: Zimmermann's	
		primitive	
13	27.10.2025 - 01.11.2025	Kirk's decision models.	
14	03.11.2025 - 08.11.2025	Sustainable resource development; Policies and	Minor Test
		challenges of natural resource management.	
15	10.11.2025 - 15.11.2025	Sustainable resource development; Policies and challenges	
		of natural resource management.	
16	17.11.2025 – 22.11.2025	Revision	
17	24.11.2025 – 29.11.2025	Revision	

- 1. Barbier, EB (2005) Natural Resources and Economic Development, Cambridge University Press, Cambridge.
- 2. Bhatta, B (2011) Remote Sensing and GIS, Oxford University Press, New Delhi.
- 3. Borton, I and Kates, RW (1984) Readings in Resource Management and Conservation, University of Chicago Press, Chicago.
- 4. Bruce, M (1989) Geography and Resource Analysis, John Wiley and Son, New York.
- 5. Chiras, DD and Reganold, JP (2009) Natural Resource Conservation: Management for Sustainable Future, Pearson, New Delhi.
- 6. Cutter SN, Renwich HL and Renwick W (1991) Exploitation, Conservation, Preservation: A Geographical Perspective on Natural Resources Use, John Wiley and Sons, New York.
- 7. Gadgil M and Guha R (2005) The Use and Abuse of Nature: Incorporating This Fissured Land: An Ecological History of India and Ecology and Equity, Oxford University Press, USA.

Signature of the teacher concerned

SMRJ Government College, Siwani (Bhiwani)

(Affiliated to Chaudhary Bansi Lal University, Bhiwani)

Session: 2025-26 Lesson Plan (Department of Geography)

Teacher: Satpal Kumar

Class: BA Hons Geography

Semester: 5th

Maximum Marks: 100

End Term Exam Marks: 80

Course Type & Title: Urban Geography

Course Code: 21UGEOH504

Credits: 4

Internal Assessment Marks: 20

Course Outcomes:

The objectives of the course are to understand the process of urbanization and origin, growth and classification of urban settlements with relevant theories and models.

It also aims to relate urbanization process and the evolution of urban system and examine the contemporary urban issues.

Sr. No.	Week/Month, 2025	Unit/ Topic/ Chapter to be covered	Assignment/ Test/ Remarks, if any
1	01.08.2025 - 02.08.2025	Familiar with Syllabus	
2	04.08.2025 - 09.08.2025	Urban Geography: Nature, Scope and Approaches;	
3	11.08.2025 – 16.08.2025	Development of Urban Geography and its Recent Trends,	
4	18.08.2025 – 23.08.2025	Evolution of City: Ancient, Medieval and Modern period	Assignment
5	25.08.2025 – 30.08.2025	Urban Space and its Characteristics	
6	01.09.2025 - 06.09.2025	Size and Spacing of Cities; Rank Size Rule;	
7	08.09.2025 – 13.09.2025	Primate City; Concept of Settlement Hierarchy;	
8	15.09.2025 – 20.09.2025	Christaller"s Central Place Theory; Ecological Processes of Urban Growth;	
9	22.09.2025 - 27.09.2025	Urban Economy	Assignment

10	29.09.2025 - 04.10.2025	Theories of City Structure: Concentric Zone Theory, Sector	
		Theory	
11	06.10.2025 – 11.10.2025	Multiple Nuclei Theory, Functional Classification of Towns;	
12	13.10.2025 – 18.10.2025	City Region: Concept, Structure and Characteristics.	
13	27.10.2025 – 01.11.2025	Urbanization: Concept, Processes and Measures;	
14	03.11.2025 - 08.11.2025	Salient Features of Urbanization in Developed and Developing Countries,	Minor Test
15	10.11.2025 – 15.11.2025	Trends and Pattern of Urbanization in India,	
16	17.11.2025 – 22.11.2025	Major Urban Issues in Mega Cities of India.	
17	24.11.2025 – 29.11.2025	Revision	

- 1. Michael, P. (2013) Urban Geography: A Global Perspective. Routledge, USA.
- 2. Cater, H. (1972) The Study of Urban Geography. Edward Arnold, London.
- 3. Hall, P. (1992) Urban and Regional Planning. Routledge, London.
- 4. Kundu, A. (1992) Urban Development and Urban Research in India. Khanna Publication, New Delhi.
- 5. Castells, M. (1977) The Urban Question: A Marxist Approach. MIT Press, Cambridge.
- 6. Bhattacharya, B. (1979) Urban Development in India. Shree Publishing House, New Delhi.
- 7. Khan & Moyer. Reading in urban Geography. Syllabus of M.Sc. Geography, Department of Geography, CBLU w.e.f. session 2020-

Signature of the teacher concerned